THE ROLE OF FRAILTY MODELS AND ACCELERATED FAILURE TIME MODELS IN DESCRIBING HETEROGENEITY DUE TO OMITTED COVARIATES

NIELS KEIDING and PER KR GH NDERSEN

Department of Biostatistics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark

and

JOHN P. KEENS

Department of Biostatistics, The Medical College of $iscosin$, 8701 α aterto n lank Road, Mil aukee, isconsin 53226, U.S.A.

SUMM R

In urvival analy i, deviation from proportional hazard may ometime α explained by unaccounted random heterogeneity, or frailty. The fraction α recalls the literature on omitted covariates in survival analysis and shows in a case study the model of the case study of the case of the study of the study of the study of the study of account for under the standard survival and developed the survival and the survival and the standard and the s replications per heterogeneity unit. Accionated failure time modelling semistric to avoid these diculties and also to yield easily interpretable results.

We propose that it would be advantageous to upgrade the accelerated failure time approach alongside the hazard modelling approach to survival analy i.

1. INTRODUCTION

Statistical modelling of heterogeneity may be based on stratication according to factors, regression on covariates, or by assuming ^a probability distritime framewor for interpretation of covariate effect in urvival analy i with random heterogeneity.

The purpose of the vertex above framework to the above the above the above framework the above framework frame and to preent another cale, tudy which, if e that of Hougaard et al.", and indicate that accelerated failure model may be preferable in accounting for (residual) heterogeneity in university in university \sim survival times due to the total times due to the total times due to the total times due to the time of the times due to the time of the times of the times of times \missing" (omitted, unrecorded) covariates.

Section ² presents ^a brief partial survey on approaches to the study of omitted covariate in the 1980, and Section 3 briefly recall the proportional hazards frailty model with aspects of current techniques for its statistical analysis. Section ⁴ presents and slightly extends the Struthers-Kalb
eisch heuritics on omitted covariates in survival analy is based on a normal-theory linear model equivalent to the accelerated failure time model. Section ⁵ $\lim_{\epsilon \to 0} \lim_{\epsilon \to 0}$

 $\,$ parameter $\,$, ma $\,$ imum $\,$ li

Let W have a tandard e-treme value di tribution of a minimum, that i , the den ity of W i $\mathbf{e}^{-}\mathbf{p}(w-e^{w}), -\infty < w < \infty$. Then T follow the above Weibull di tribution, where

$$
Y = \log T = -\frac{\log \kappa}{\nu} - \frac{\beta_1}{\nu} x_1 - \frac{\beta_2}{\nu} x_2 + \frac{W}{\nu}.
$$

Thi i an *accelerated failure time model*: an ordinary regre ion problem of log(urvival time) on x_1 and x_2 with e-treme value di tributed re idual with cale parameter ν^{-1} , regre ion coefficient $-\beta_1/\nu$ and $-\beta_2/\nu$ and intercept $-\nu^{-1}$ log κ . Borrowing e-perience from normal-theory linear regre ion (i.e. a uming W tandard normal $(0,1)$), it i een that the regre ion coefficient and intercept are e-timated by the u-ual regre ion e-timate, in particular $E(\widehat{\beta_1/\nu}) = \beta_1/\nu$, ν^{-1} i e timated by the u ual re idual empirical variance s^2 , and for large amw27TD0TDfl(24 2336TD^9c8180TDfl9-3040560TDfl(empide)TTg9

above, $\beta\tau$ i e timated by the u ual regre ion e timate, o $E(\widehat{\beta\tau})$ = $\beta\tau = \beta_1/\nu$ (= the theoretical regre ion of Y on x_1). Therefore $\hat{\beta} \stackrel{P}{\rightarrow} \beta =$ $\beta_1 \nu^{-1/2} / \tau$, which i clo er to 0 than β_1 : there i the well- nown attenuation due to an omitted covariate. Furthermore

a . var.
$$
(\hat{\beta}) = \frac{1}{n} \left(\frac{1}{\sigma_{x_1}^2} + \frac{\beta_1^2}{2\nu\tau^2} \right) < a
$$
. var. $(\hat{\beta}_1)$;

the tandard error i al o attenuated, indeed if $\sigma_{x_1}^2$ i large, the WolfH4dte 570311114138999879206111311

bution has changed, now being that of (W +U)=. Again borrowing experience from the from the state α is the estimated by the state by the state by the state of α the u-ual regression e-timate, $E(\beta_1/\nu) = \beta_1/\nu$, but if we had erroneously a umed no frailty $(U = 0)$, $\nu - 1$ would have been overe timated by the fac- $\sigma_{\text{U}} = \sqrt{\sigma_{\text{U}}}}$ and σ_{V} variation and the hazard model regression parameter $\beta_1 = (\beta_1/\nu)/\nu^{-1}$ imilarly undere timated by the factor η 1, leading to *atten*uation by disregarding frailty.

Conclusion. For the Weibull model the accelerated failure time parametrization conveniently separates regression coecients from dispersion parameters, allowing unchanged estimation of regression coecients under the frailty-amended model, which only contributes to the dispersion. This was previou ly pointed out by Hougaard et al.¹¹.

5. EXAMPLE

nder en et al.² considered in their E-ample VII.3.1, VII.3.4 and IX.4.3 of the patient melanoma for 200 patients and IX.4.3.1, I That 3/TT THE WHOO tly andT14h.n

similar ways of incorporating these covariates. If the covariates are included in ^a standard Cox model the estimated regression coecients and standard errors were

$$
\log(\text{tumour thic ne}) \quad 0.610 \ (0.176)
$$
\n
$$
\text{uceration} \qquad 0.971 \ (0.321)
$$

but graphical chec graphical chec (Ander en et al.², Fig. VII.3.5 and VII.3.6) raised some suspicion that hazards for patients without and with ulceration, were not proportional but rather converging. Therefore ^a time-dependent covariate to account for possible time \wedge covariate interaction was added:

 \max tis measured in day cand \max to give λ good. And chinood ratio test of no effect of the latter variable yielded $= .02$, giving ome evidence to upport the suspected deviation from proportionality.

Semiparametric frailty model.

Because this deviation might be interpreted as ^a selection eect in ^a heterogeneous population arising from important unmeasured confounders not being included in the analysis, ^a frailty model was postulated. To the

Cox regression model specication of the death intensity with the two covariates was multiplied a fractionary factor \mathcal{L} as a fraction of \mathcal{L} assumed with \mathcal{L} $E(Z) = 1, \text{Var}(Z) = \delta$. The fitted parameter were (with the no-frailty model e vialence avvenuelle for comparison parison dal p

with a taliable of the test statistic of the statistic statistic of the statistic of the statistic order of th For details on estimating the standard errors under the frailty model, cf. nder en et al.²⁷.

It i thus een that incorporation of unmeasured population heterogeneity in this case deattenuates the eects of the measured covariates (as well as of their standard errors) by ^a factor of about 2.

eibull frailty model.

ander en et al.² noted that the underlying intensities of the fitted $\mathrm{C}\mathrm{O}^+$ regre ion model varied o regularly that a hypothe i of Weibull underlying intensity showled be acceptable. In order to study the \mathcal{C}_1 etation results for \mathcal{C}_2 . vey by Klein et al. , as well as the power variance family (α, ψ, ψ) due to Hougaard³², of which all of the e are special cases. Hougaard's model is most ever the problem three characterizes in the Laplace transformation of the characterized by the Laplace transformation of the Laplace transformation of the Laplace transformation of the Laplace of the Laplace transformation

$$
e^{-}p\left\{-\frac{\psi}{\alpha}\left[(-s)^{\alpha}-\alpha\right]\right\} .
$$

:

Our gamma distribution is $(0, o^{-1}, o^{-1})$, $(0, \delta^{-1}, \delta^{-1}), \text{ while } (\alpha, \psi, 0)(0 < \alpha < 1)$ are the positive stable distribution and $(\frac{1}{2}, \mathcal{D}, \cdot)$ $_2$, φ , θ and θ inverse Gaussian distribution. i well nown, the positive table frailty distribution lead to unidentiable ability in the present case of or one of one event case, one on one of one the three three in vidual. For the other frailty models, with the no frailty model included for comparison, the estimates are given in Table 1.

It i een that the result from the all-inclusive power variance frailty model are virtually indistinguishable from that of the gamma frailty model, which in turn fit ignificantly better than the inver e Gaussian frailty and the \max frailty/positive stable framey (the latter two having the same list through, I o, the e timate for no frailty and gamma frailty are well compatible with the emiparametric e timate quoted above, and also there is a deattenuation factor of 2 to 3 one regression parameter when considered the gammatic to a structure of the gammatic consider frailty model. The assumption of inverse Gaussian frailty yields intermediate results, and judging from the likelihood also ^a less eective accounting for the heterogeneity.

Table ² records the estimated correlations between the estimated frailty parameter (indicating the pread of the frailty distribution) and the estimate of the regression coecients and the Weibull shape parameter. The positive

correlation reflect the inherent negative correlation between two alternative ways of describing the observed heterogeneity in survival times: either by an analysis of times: either by an large frameter (wide computer (wide frameter (wide frameter of the second text of the second of the second text of the second of the secon intersity (small shape parameter). In the underlying the weither the normalizer in the no-frainter μ model is insignificantly different from μ an e-ponential distribution (hape parameter=1), a much more concentrated underlying distribution is the gamma and inverse the gaussian of the gamma and inverse and inverse and inverse frailty models.

The positive correlations between estimated frailty parameter and estimated regression parameters re
ect the deattenuation eect described in Section 3. Intuitively: The interindividual variation is either described by covariates (high regression coecients) or frailty (large frailty parameter).

Accelerated failure time interpretation.

Iternatively, we may tart from the accelerated failure time (FT) interpretation outlined towards the end of Section 3. We then obtain the results of Table 3,accounting for the multiplicative indeterminacy in the positive table frailty distribution and till as uming underlying Weibull distribution. It i een that in the FT interpretation, the variou model agree. Let

 $\log(\text{urvival time}) = \text{con t.} - 0.60 \times \log \text{tumour thic ne}$ $-$ 0.75 \times ulceration $+$ noi e .

That i, for fired value of ulceration, if tumour thic ne increa e by a factor α , urvival time will decrea e by a factor $\alpha^{0.60}$. Similarly, for fi-ed value of tumour thic ne, ulceration of the tumour will decrea e life by a factor of $e^{-0.75} \approx 0.47$ compared to what it would have been if the tumour wa not ulcerated.

6. $DI^{\alpha}CU^{\alpha\alpha}ION$

railty interpretation: individual or population risk. The original impetu for the frailty concept uch a defined by Vaupel et al.¹ wa to clarify the behaviour of the *mean hazard among the survivors* in a heterogeneou population. In our e-ample we ob erved a (light) deviation from 80TDffoTDff(ed)Tjff1o0020TDff(t) the only slightly worse tting inverse Gaussian frailty distribution deattenuation was halved, and for the positive stable frailty model it (the parameter

above) is inherent about the description of the state of the part by the state of the state of the state of th the positive stable frailty distribution, Robins and Greenland^{-4,24} discussed consequences of such unidentiability problems for compensation schemes). It is well known that ratios of regression coecients are much less sensitive to model mission to a communication than the regression to regulate the regression communication of the r ee Solomon⁻ for e⁻amples from the present contest and Li and Duan⁻⁻ for a careful general discussion with review of earlier with review of earlier work. This is also very constructed apparent in our example.

conceptual explanation may be obtained from the observation of the observation above the observation above the about trong po itive correlation between the e-timate of the Weibull hape parameter is the spread of the space of the special of the special distribution of the special of the special data contains and α is distinguishing to distinguishing the random variation variation α as within-individual (large) or between-individual (large frailty spread), and therefore interpretation based only on the within-individual hazard are un table.

Accelerated failure time interpretation: een above the FT interpretation (which was here feasible starting from log-Weibull error distribution) avidate van unidentifikability problem by attention attention of the dependence of the dependence of the dependence on covariate from the elusive concept of 'individual hazard' to the acceleration factor of the life time it elf, thereby combining the within- and betweenindividual components of variation into much more stably determined functionals. The heterogeneity is conveniently relegated to an overdispersion elemen

REFERENCES

- 1. Vaupel, J.W., Manton, K.G. and Stallard, E. `The impact of heterogeneity in individual frailty on the dynamic of mortality', $Demography$, 16, 439-454 (1979).
- 2.nder en, P.K., Borgan, Ø., Gill, R.D. and Keiding, N. Statistical Models Based on Counting rocesses, Springer, New or, 1993.
- 3. Nielsen, G.G., Gill, R.D., Andersen, P.K. and Srensen, T.I.A. `A counting proce approach to ma-imum li elihood e timation in frailty model ', Scandinavian Journal of Statistics, 19 ,
- 8. Oae, D. `Frailty model for multiple event time ', in Klein, J.P. and Goel, P.K. (eds), Survival Analysis: State of the Art, Kluwer, Dordrecht, 1992, pp. 371-379.
- 9. Pons O., Kaddour, A. and de Turckheim, E. `A nonparametric approach to dependence for bivariate cen ored data', in Klein, J.P. and Goel, P.K. $(\mathcal{C} \mathbf{u}_i)$, D*urvival Analysis. Drait of the Art*, Kluwer, Dolutelli, 1992, pp. 381-392.
- 10. Prentice, R.L. and Cai, J. `Marginal and conditional models for the analy i of multivariate failure time data', in Klein, J.P. and Goel, P.K. $(\mathcal{C} \mathbf{u}_i)$, D*urvival Analysis. Drait of the Art*, Kluwer, Dolutelli, 1992, pp. 393-406.
- 11. Turnbull, B. `Multivariate failure time analysis: Discussion of papers by Oa e : Pon . Kaddour and de Turc heim; and Prentice and Cai', in Klein, J.P. and Goel, P.K. (eds), Survival Analysis: State of the Art, Kluwer, Dordrecht, 1992, pp. 407-414.
- 12. Hougaard, P. 'Modelling heterogeneity in urvival data', *Journal of Applied robability*, 2, 695-701 (1991).
- 13.a hin, ., Vaupel, J. and Iachine, I. 'Correlated individual frailty: n advantageou approach to urvival analy i of bivariate data', \textit{Mecha} nisms of ageing and development, **5**, 1-10 (1995).
- 14. Robins, J. and Greenland, S. `The probability of causation under ^a tocha tic model for individual ri \therefore Biometrics, 45, 1125-1138 (1989).
- 15. Robins, J. and Greenland, S. `Estimability and estimation of expected year of life lot due to a hazardous e-posure', Statistics in Medicine, 10, 79-93 (1991).
- 16. Hougaard, P., Myglegaard, P. and Borch-Johnsen, K. `Heterogeneity models of disease susceptibility, with application to diabetic nephropathy', *Biometrics*, **50**, 1178-1188 (1994).
- 17. Gail, M.H., Wieand, S. and Piantadosi, S. `Biased estimates of

- 29. Murphy, S.A. `Consistency in ^a proportional hazards model incorporating a random effect'. The Annals of Statistics, 22 , 712-731 (1994).
- 30. Murphy, S.₁. `We ymptotic theory for the frailty model', The Annals of Statistics, 23, 182-198 (1995).
- $31.$ Suruthers, C.A. Asymptotic properties of linear rank tests with censored α data, Ph.D. The i, Department of Stati tic, Univer ity of Waterloo, Ontario, 1984.
- 32. Hougaard, P. `Survival models for heterogeneous populations derived from table distributions', *Biometrika*, **73**, 387-396 (1986).
- 33. Li, K.-C. and Duan, N. 'Regression analy is under linguistion', The Annals of Statistics, **17**, 1009-1052 (1989).
- 34.alen, O.O. \degree linear regression model for the analysis of life times', Statistics in Medicine, , 907-925 (1989).

Table 1. E timate for Weibull frailt

Table 2. Weibull frailty model . Correlation between e timated frailty parameter and parameter estimates as specied.

