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1. Introduction 

Multi-strain models have been widely used in epidemiology (Gupta, Ferguson, and Anderson, 

1998; Kamo and Sasaki, 2002; Abu-Raddad et al, 2005; Bianco et al, 2009; Minayev and 

Ferguson, 2009). Developing and using multi-strain models is a challenging procedure due to 

numerous parameters such as death rate, birth rate, force of infection, and transmission rate, 

which are commonly assumed to be strain specific.  

One of the key concepts of these models is cross-immunity, which allows infection by 

one strain to induce partial/perfect protection against other strains. Gupta, Ferguson, and 

Anderson (1998) proposed a very general model accounting for the cross-immunity in a multi-

strain system, based on which they studied the effects of cross-immunity on evolution of strain 

structure. Abu-Raddad and Ferguson (2005) investigated population dynamics of host-pathogen 

systems involving an arbitrary number of antigenically distinct strains whose interaction depends 

on the cross-immunity. Minayev and Ferguson (2009) studied multi-strain deterministic 

epidemic models in which cross-immunity varies with the genetic distance between strains. 

Kamo and Sasaki (2002) proposed a two-strain susceptible-infected-recovered (SIR) model with 

cross-immunity. These models, however, assume an equilibrium population size over time, i.e., 

equal, constant birth and death rates. These assumptions might be too strong since the host 

population might fluctuate dramatically between seasons, which may affect the force of infection 

(Davis et al, 2005). For example, hispid cotton rat populations usually have peak litter 

production occurring in late spring and in late summer-early fall (Cameron and Spencer, 1984).  



In addition, these earlier works were restricted to simulation studies assuming known 

parameter values. Another issue is that, except for the model of 



County, Georgia, USA, over a period of 17 months, from March, 1996 to July, 1997, except 

December 1996, yielding altogether 483 trapping records (Kosoy et al., 2004a; Kosoy et al., 

2004b). Cotton rats were captured for two or three consecutive nights each month and blood 

samples were taken. First-time captured cotton rats were marked. Marked and sampled rats were 

released. Sixty four out of 483 trapped rats were found to have co-infections by two or three 

Bartonella strains. Based on the 



strain and the prevalence of strain B was low. In this paper, we consider two scenarios of cross-

immunity: i) between genogroups; ii) between variants in the same genogroup. For the first 

scenario, we combined B and C due to low frequency of strain B and relatively high genetic 

similarity between strains B and C (Table 1 of Kosoy et al., 2004b). For the second scenario, we 

consider genogroup A only because of its high prevalence. Table 1 of Kosoy et al. (2004b) 

shows that A1 and A5 are genetically close to each other, and so are A2 and A4. Therefore, in 

this report, we compare A1&A5 vs. A2&A4 and A vs. B&C.  

 

3. A two-strain SIR model with state variables expressed as proportions 

We consider the two-strain special case of the multi-strain model proposed by Gupta, Ferguson, 

and Anderson (1998). Their model provides a general framework for modeling the dynamics of 

an infectious disease with multiple strains of a pathogen that may induce various degrees of 

cross-immunity in the hosts. Here, we extend their model to allow for variable host reproduction, 

and that the death rate can also be variable and not equal to the birth rate. Moreover, we modify 

the model so that a host is assumed to only make a fixed number of contacts with other hosts, on 



respect to the second strain. For example,  ISx  is the proportion of hosts infected by the first 

strain but susceptible to the second strain,  Ix �x is the proportion of hosts infected by the first 

strain, while  Ix�x  is the proportion of hosts infected by the second strain. All state variables are 

implicit functions of time  with their derivatives denoted by the dot notation. The extended two-

strain SIR model is given as follows: 
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where the parameter i�D’s are the transmission rates between an individual infected by strain i 

(i=1, 2) and one susceptible to both strains, i�J 's are the host's recovery rate from an infection by 



where due to a weakened immune system by on-going infection, a host infected by one strain 

and susceptible to the other strain may have an elevated chance of being infected by the latter 

strain compared to a host susceptible to both strains (Small et al., 2010). For such cases, �G may 

be greater than 1. Thus, we shall allow �Gto be non-negative. In summary, 0�G�  represents the 

case of perfect cross-immunity between the two strains. If �G is positive and less than 1, there 

exists a partial cross-immunity between the two strains. If �G is equal to 1, there is no cross-

immunity for the two strains and they infect the host independently. For 1�G�! , it signifies that 

the two strains are positively correlated, i.e., infection by one strain elevates the transmission rate 

of the other strain to the host. Asymmetric cross-immunity (Nuño et al., 2008) may be 

incorporated into the above model. However, in view of the relatively shortness of the Bartonella 

data, 
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where u, v and w are unknown parameters.  

 

The method of (approximate) conditional least squares via the unscented Kalman filter (UKF-

CLS) (Ahn and Chan, 2013a) was employed to analyze the differential equation model (1) with 

the Bartonella data, which we now briefly outline. Consider the case that the state vector of the 

underlying system evolves according to a vector differential equation, with observations of some 

function of the state vector taken over discrete time. In our model, 1, 2,( , )T
t t ty y y� � � � � � �is the 

observation vector and 1, 2, 1, 2,( , , , , )T
t t t t t tv x y y z z�  the true state vector at time t. (For ease of 

exposition, we assume data were taken over equally-spaced epochs, say, 1, 2,..., ,t n� but the 

method can be readily extended to irregularly sampled data.)  Were the differential equation (1) 

linear and assuming normally distributed measurement errors, Kalman filter ( an



approximation of the conditional means and variances for nonlinear processes, see Ahn and Chan 

(2013b). Unknown parameters can be estimated via approximate conditional least squares by 

minimizing the objective function 2
| 11

ˆ| ( ) |n
t t tt

y y �T��� 



only if information of individual trapped host is available, which is, fortunately, the case for the 

Bartonella data.   

 

5. Results 

Tables 1 and 2 summarize the fitting results of the proposed two-strain SIR model with 

symmetric cross-immunity and identical recovery rates to the infection time series data with 

A1&A5 vs. A2&A4 and those with A vs. B&C, respectively. All 95% confidence intervals are 

obtained by nonparametric bootstrap detailed at the end of Section 4. The parameter �D



1.164 – 15.438) for the two-strain model A1&A5 vs. A2&A4, and that of A, vs. B&C, 

respectively.  These results are consistent with the observations that Bartonella infections by 

these strains were endemic, with infections predominantly by strain A, in the cotton-rat 

population under study.  

 

Note that the estimates of the birth rate parameters u, v, and w are similar in both models.  The 

bottom left curves in Fig. 2 show the estimated birth rate curve. The curve suggests that birth rate 

attains the maximum in June and the minimum in December, which is consistent with the report 

by Rose (1986) reporting that all of the trapped female cotton rats were pregnant from March 

through July, but none were pregnant in November and December.  Recall that | 1ˆ ( )t ty �T��   is the 

approximate conditional mean of ty�� , given past monthly observations, computed via the UKF. 

The fitted values in the tht  month are then given by | 1
ˆˆ ( )t ty �T��  

where ˆ�T is the UKF-CLS estimate; 

the two components of the vector of fitted values will be denoted by  ,ˆ , 1, 2.i ty t �   The fitted 

values (red X’s) are joined by red solid lines in Fig. 2, superimposed with the 95% predictive 

bounds (blue dotted lines) of the infection rates in Fig. 2, which track the observed infected 

proportions (solid circles) well. The 95% predictive intervals are computed by the formula 

, ,ˆ 1.96i t i ty s� r � u where ,i ts  is the square root of the corresponding diagonal element of ˆ ( | 1)( )t tVar y
�T ����  

which is computed via UKF. 

 

The residuals are defined as , , ,ˆi t i t i tr y y� ���� , i.e., subtracting the conditional means (fitted values) 

from the observed values, and the residuals estimate the error terms 
0, , ( | 1)( )i t i t t te y E y�T ��� ��� � � � where 



0�T  is the true parameter. By construction, the ,i te 's are independent. So, the goodness of fit of the 

fitted models may be assessed by checking whether the residuals are approximately independent.  

Residual diagnostics may be further simplified by standardizing the residuals by normalizing 

them by the estimate of the conditional standard deviations computed via the UKF.  We examine 

whether or not the (standardized) residuals are autocorrelated by checking the residual 

autocorrelation functions (ACF), while between-series dependence in the residuals can be 

examined by the cross-correlation function (CCF), which are plotted in Fig. 3.  None of the 

residual autocorrelations are significant and so are all cross-correlations, except for one lag, 

suggesting that the standardized residuals are 
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Tables  

Table 1. Parameter estimates of model (3) fitted to A1&A5 vs. A2&A4 

 1�D  2�D  �J  �G 
Estimates 1.931 1.722 0.079 0.132 
95% CI (1.



Figure 1. Prevalence of Bartonella strains and the number of trapped cotton rats over the study 

period. Solid circles show observed values. The y-axis of the bottom figure represents the 

number of trapped cotton rats.  

 

 

 

 

 



Figure 2. Estimated birth rate, prevalence and 95% confidence intervals. For the birth rate curve, 

the solid line is the birth rate function from the fitted model with A1&A5 vs. A2&A4 and the 

dotted line from that with A vs. B&C. The two estimated curves are quite similar. For the 

prevalence curves, the black dots and the red solid lines represent the observed and predicted 

infection rates, respectively. The blue dotted lines are the 95% confidence intervals.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 3. Diagnostics: ACF, CCF, and Ljung-Box p-value plots. All estimated residual 
autocorrelations lie within the (individual) 95% confidence intervals (dotted lines), suggesting 
that the residuals are not auto-correlated. The estimated residual cross-correlations are also 
within the 95% confidence intervals, indicating no cross-correlations in the residuals. All p-
values in Ljung-Box plots are greater than 0.05 (dotted line), which further confirms that the 
residuals appear to be white noise. 

 
 





categories are denoted by SSX , ISX , etc., all of which are functions of time t, although the 



Kamo and Sasaki (2002) assumed that �Gvaries between 0 and 1. For 0�G� , a host recovered 

from an infection by one strain of the pathogen acquires perfect cross-immunity against other 

strain, that is, it will never be infected by the other strain. On the other hand, for 1�G� , a host 

recovered from an infection by one strain of the pathogen does not have a cross-immunity 

against the other strain, so that the two strains can independently infect a host. One of the 

assumptions for the two-strain SIR model (1) is that a host may make contact with any host in 

the population and that the contact rate is proportional to the population size, which may not hold 

for the case of vast study area and/or large population. 

To derive the two-strain model with the state expressed in terms of proportions, we consider the 

first derivative of the proportions, for example, ( / )SS
d X N
dt

. The variables standing for the 

proportions will be denoted in lower case, e.g. we write SSx  for /SSX N , etc. Following Kamo 

and Sasaki (2002), we transform the nine state variables into five state variables as follows: 

SSx x� , 1 Iy x �x� , 2 Iy x�x� , 1 IS RSz x x� �� , 2 SI SRz x x� ��, where I IS II IRx x x x�x �  � � � � and 

I SI II RIx x x x�x �  � � � �. In addition, we replace the term 1 1SSX X�E �x by 1 1 /SSX X N�D �x  where 1�D  is the 

product of the expected number of contacts a host makes with other hosts per unit time and the 

transmission probability given a contact between an individual infected by strain 1 and one 

susceptible to both strains. This specification implies that on average a host makes a fixed 

number of contacts per unit of time.  

Next, we consider the first derivative of SSX , ( / ) .SSX N �c Then, we have 
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where the parameter i�D’s are the transmission rates between an individual infected by strain i 

(i=1, 2) and one susceptible to both strains. Note that the death rate parameter �P is eliminated in 

the algebra so that it no longer appears in (2). However, since Equation (2) is directly derived 

from (1), (2) accounts for the possibility that the birth rate differs from the 


