ӰԺ

ӰԺ School of Graduate Studies U1-Research 2F Microscope Lab-Grad-hero

PhD Program in Physiology at the ӰԺ

The Physiology PhD program at ӰԺ is home to one of the top research and training facilities in the nation, and is led by prominent scientists in disciplines such as Cardiovascular Physiology, Genetics & Genomics, Molecular & Cellular Physiology, and many more. As a student within this program, you will receive unsurpassed mentorship and training, and you’ll also benefit from a highly collaborative environment focused on integrative physiology.
Bioethics-c
Virtual Fair

Biomedical Programs Virtual Open House

Join us on Tuesday, November 12th from 4:00pm-6:00pm CST to learn more about our biomedical PhD degree programs. All who register and attend this event will qualify for an application fee waiver (value of $50 per application submission).

Message from the Director

Matthew Hodges, PhD

Matt Hodges, PhD

Professor of Physiology
Director, Graduate Program in Physiology

mhodges@mcw.edu
(414) 955-7528

The concept that basic, integrative and systems physiology fosters breakthroughs in all areas biomedical science and translational medicine continues to be an innovative feature of our PhD training program. Our training faculty embrace the concept that the study of physiology involves understanding how normal biological processes breakdown in cardiovascular, renal, respiratory, and other diseases. To ensure that our students are well versed in this concept, we have adopted and developed new technologies and scientific approaches to the study of mechanisms of disease at the whole-animal, cellular, and molecular levels. The training we provide also ensures that scientific breakthroughs made in the lab reach patients by emphasizing translational science initiatives. Our faculty also foster highly collaborative research programs, and as such the students in our training program are exposed to a new energy and unique opportunities in new and evolving fields such as physiological genomics, proteomics, bioinformatics, systems molecular medicine, and personalized medicine. Our program has a an outstanding track record of NIH funding supporting our science and a long history of successful alumni that go on to become leaders in their respective scientific disciplines.

Physiology (PhD) Program

About the Program

About the Program

The Physiology PhD program at the ӰԺ addresses the need to train integrative and systems physiologists. Indeed, research in physiology departments worldwide has changed from an emphasis on whole-animal studies to an orientation based on cellular and molecular research. Currently, few physiologists are being trained to conduct whole-animal research and to teach the traditional systems physiology required for the education of health professionals; our program considers this a high priority.

This increased need for integrative physiology coincides with the explosion in the field of physiological genomics. As mammalian genomes are sequenced, the search for gene function will continue to accelerate. Attaching function to the identified genes and understanding how these genes work together at a systems level will occupy our students, trained in integrative physiology, for much of their careers.

The Department of Physiology recognizes the importance of attracting and training highly qualified students into the field of integrative (cellular, molecular and whole animal) physiology. Our primary objective is to provide outstanding training across the broad discipline of physiology, by giving students an in-depth knowledge of the fundamental mechanisms and processes which underlie circulatory, renal, pulmonary, and smooth muscle function in wellness and in disease. The graduates of our program are prepared to contribute to achievement of the long-term goals of developing improved strategies for prevention and control of these diseases. Moreover, our graduates are trained for integrative physiology that includes whole animal, cellular, and molecular research; thus they are prepared to be leaders in physiology research in the 21st century, and to teach traditional systems physiology.
Current Students

Current Students

Learn more about the current students in the Physiology PhD Program.
meet our students
Curriculum

Curriculum

The PhD program is interdisciplinary both in course work and research (basic science and translational) to provide a strong foundation for a career in integrative physiology, and of equal importance, create a mindset and background that will enable the trainees to develop and/or move into new and evolving scientific fields.

The major emphasis of the program is to provide state-of-the-art research training. This training will be obtained under the supervision by a team of our primary (NIH funded) Physiology mentors, and co-mentors from other basic science and clinical faculty. The primary research emphasis is cardiovascular/renal and respiratory physiology and genetics, with endocrine, smooth muscle, and the central nervous system physiology and genetics as the major focus in some laboratories. Research will range from the use of whole animal through isolated organs, tissue culture and single cells to the molecular level, including signal transduction, biochemical pathways, gene expression and computational approaches to the analysis of complex systems.

Additional information about the program includes:

  • It is designed for students to a) acquire basic knowledge of all the biomedical basic sciences, b) develop critical thinking, integrative reasoning, and technical skills for research, and c) obtain the oral and written communication skills required for research and teaching responsibilities.
  • There is flexibility in the program that meets individual trainee interests while retaining a degree of structure that will optimize achievement of the objectives.

Our trainees are required to complete research in whole animal, cellular, and molecular areas through interdisciplinary team approaches, networking, and collaborations between basic science and clinical faculty with an emphasis on addressing the national need to train for the more integrated-systems future of biomedical research in the post-genome era.

Physiology PhD Program Sample Program Plan (PDF)

PhD Qualifying Examination

At the end of the second year, Physiology graduate students take the PhD Qualifying Examination:

1. Examination committee
The examination committee usually chaired by the Program Director will be composed of members of the Department Graduate committee plus one or two content experts. The student’s primary mentor is not on this committee.

2. Written research proposal
The research proposal should be a grant style proposal based on class materials or work conducted in laboratory rotations. The proposal does not necessarily reflect the work being done in their mentor’s laboratory nor is it considered their dissertation proposal. The proposal should be composed of the following (with suggested page lengths, not to exceed 7 pages): a) background (~2 pages), b) specific aims and hypotheses (~1 page), d) pilot data (optional and not expected), e) approach (~2 pages), and f) statistical treatment of data (~1 page). The proposal must be provided to the committee at least two weeks prior to oral defense. The proposal will be evaluated by the examination committee.

3. Oral defense date
This will be set once the examination committee rates the written proposal as acceptable.

4. Examination committee members
This group can question the student at any point during the oral presentation. The student is expected to demonstrate a thorough understanding of the biomedical sciences.

5. Final decision
The committee determines a pass or fail based on both the written document and the student’s performance on the oral defense. The examination committee will also assign each student a score based on a 5-point rating system as required by the ӰԺ graduate school. The committee will orally inform the student of their decision immediately after questioning and will also provide a written summary.

Other Courses

These are generally taken after Second Year and are optional.

1. Computational Methods of Biomedical Research (3 credits)This course, taught by Dr. Dash, focuses on practical techniques for simulation and analysis of biological systems, developed largely through application-driven examples. Examples will be developed to a depth at which models will be used to analyze real biological or physiological data. To accomplish this, the important details of the underlying biological systems must be described along with a complete step-by-step development of model assumptions, the resulting equations, and (when necessary) computer code.

2. General Pharmacology (4 credits)
The course consists of lectures and demonstrations on the principles of pharmacology and the major therapeutic drugs. Discussed are the interaction of drugs, drug absorption and elimination, drug distribution, dose response relationships, toxicity, and therapeutic efficacy.

3. Mathematical Biology (3 credits)
Dr. Dash teaches the students how to express physiological problems in equations and how to solve such equations. Emphasis on physiological problem-solving methods rather than mathematical theory. Topics include the application of matrices, differential equations, and numerical analysis to problems in bioelectricity, biomechanics, and optics.

4. Effects of Drugs and Other Chemicals on the Autonomic and Somatic Nervous Systems (2 credits)
Recent advances in the field of autonomic and peripheral nervous system physiology and pharmacology: drug receptor concepts; agonist-antagonist interactions; chemical transmission and the pharmacodynamic effects of autonomic agents.

5. Central Nervous System Pharmacology (2 credits)Selected drugs which affect the central nervous system are discussed. Emphasis is on those neuronal mechanisms which are involved in the elaboration of behavior. The neurochemical and neurophysiological basis of drug action is presented.

6. Advanced Cell Biology (3 credits)
Lectures and readings in the renewal, differentiation, communication, adhesion, secretion, motility, gene activity, and mitochondrial dynamics of eukaryotic cells.

7. Phys 08399 Doctoral Dissertation (9 semester hours)
Students enroll in this course during the semester they defend their dissertation which is their last semester in the program.

Selection of a Dissertation Preceptor (Primary Mentor):
This process begins upon matriculation when the students begin laboratory rotations. The Program Directors inform trainees of faculty that are eligible to be preceptors. Eligibility requires a federally funded research grant, demonstrated mentoring and teaching skills, and available time and resources to support a student. Selection of a preceptor will occur via mutual agreement (between the trainee and the faculty member) and must be approved by the Program Directors. The laboratory rotations, attendance in seminars and courses, and the compatibility of the personalities and styles of the student and preceptor are all factors in the student’s decision regarding a mentor. At the completion of the 3 laboratory rotations, the students finalize their decision regarding a preceptor. They are required to write a general description of the dissertation research, and if acceptable, the Program Directors will then approve the student’s choice of dissertation primary mentor.

The Dissertation Committee, Dissertation Research, and Mentoring
The trainee and preceptor will form a dissertation committee composed of 2 additional Physiology faculty members, co-mentors from another basic science department and/or from a clinical department, and a senior scientist outside of ӰԺ. The committee must be approved by the Program Directors by the end of the second summer in the program. Committees will meet at least twice yearly to evaluate progress. Within 6 months of committee formation, a dissertation proposal must be submitted to committee members, the Program Director, and Dean of the Graduate School for approval. The Program Directors attend the twice yearly required meetings. They assess student progress as outlined in their individual development plans, e.g. meeting the benchmark of two publications stemming from dissertation research.

The dissertation proposal describes the problem, hypotheses, and methodology of the dissertation research; in the Physiology department, dissertation proposals must span the continuum from the subcellular to the whole animal level. The specific aims of the dissertation requires the expert contribution of a co-mentor in a clinical department and usually also a co-mentor in a basic science department other than physiology.  This requirement meets the NHLBI “group mentorship” plan “whereby multiple senior partners in team-based research lend their individual expertise to the trainee.” The dissertation committee and research of recent graduate (Gary Mouradian) are an example of: 1) the collaborative contributions of diverse faculty mentoring, and 2) the expansive research scope from whole animal to cellular/molecular mechanisms.

Graduate Student's Individual Development Plan
Each student must create and then annually update an Individual Development Plan.

Step 1
Consider these two questions:

  1. What are your long-term career plans? What do imagine you will be doing 10 years from now?
  2. Do you have plans to obtain further training once you complete your PhD? If so, what are those plans and how will they help you achieve your long-term career goal?

Answer each of these questions briefly to help you focus your annual development.

Step 2
Step two is identifying the skills that you need to acquire and developing an annual plan to help you do this. Use the template in questions 3 and 4 as a guide. You should include your mentor or program director in discussions about skills development and the timeline towards graduation.

3. Timeline for skills development.

The timeline should include discussion of how you will gain expertise in those skills that will be important for your future development. Several suggestions for areas are listed below but this is not a complete list. You should add additional skills that are unique to you.

  1. note taking, manuscript reading, efficient extraction of information
  2. study habits
  3. oral and written communication
  4. critical reasoning
  5. acquisition of knowledge
  6. teaching

For the current calendar year which of the skills listed above will you focus on developing? What are your plans to acquire or improve those skills?

4. Timeline to complete requirements.

This is the timeline by which you anticipate achieving the following critical milestones towards your degree.

  1. course work including required and optional
  2. preliminary examination
  3. dissertation outline
  4. chapters or manuscripts for dissertation
  5. completed dissertation and defense
  6. other
Admissions

Admissions

Degree Offered
The Physiology Graduate Program offers a Doctor of Philosophy (PhD).

Program Admission Requirements
Those interested in pursuing education and research within the Department of Physiology should pursue admission through the Interdisciplinary Program in Biomedical Sciences (IDP), the Neuroscience Doctoral Program (NDP), the Medical Scientist Training Program (MD/PhD), or direct admission into the Physiology program.

A Bachelor’s degree (either completed or in the process of completing) is required for admission to any ӰԺ graduate program. Applicants will ideally have a 3.0 or higher grade point average (GPA). Personal statements and letters of recommendation from professors, advisors, research supervisors, etc. who know you well are highly regarded in the admission process. An official test score, GRE or otherwise, is no longer required for admission consideration. However, test score submissions will be consider if they are submitted voluntarily. Prior research experience is also strongly considered.

The ӰԺ Graduate School operates on a rolling admissions basis. However, applications accepted by the priority application deadline of December 15th will receive first priority for admission the following Fall. Students are admitted once per year.

Application Information
An applicant’s undergraduate or master degree program should be in a relevant area of science or mathematics in order to be eligible for consideration. Most applicants have previous research experience. Undergraduates may apply directly to the Physiology Graduate Program by December 15 each year. The Program Directors prioritize applications based on the following criteria:

  1. The academic record of the applicant, including undergraduate and graduate transcripts and graduate record examination scores
  2. The quality and extent of previous research experience, including publications
  3. Letters of recommendation, which support a commitment of the applicant to biomedical research
  4. The personal statement of the applicant describing career goals and the importance of this program to the achievement of those goals.

Interview Information
On-campus interviews are then scheduled for the most qualified U.S. applicants. The schedule for your interview day will consist of:

  • An orientation by Program Directors
  • Attendance at course lectures
  • 30-minute individual interviews with four (4) faculty members
  • 10-minute oral presentation with 5 minutes of discussion for each candidate
  • Tour of research laboratories and educational faculties
  • Lunch and dinner with faculty and current graduate students.

The week following the interviews, all faculty and current graduate students provide input to the Program Directors and department chair regarding the potential of each applicant for a successful career in biomedical research. The oral presentation (articulation, poise, organization, understanding of topic, passion for research), the interpersonal interaction with faculty members and students, and the compatibility of research interests of the applicant with research opportunities available in the laboratories of the program faculty members are all important considerations for admission

Alternative Admission Options
Applicants may alternatively apply to either the Neuroscience Doctoral Program or the Interdisciplinary Program in Biomedical Sciences at ӰԺ. These programs represent the combined recruitment efforts of multiple basic science departments. Physiology faculty members participate in the leadership of these programs, the screening of applications, the interview process, and the selection of applicants for admission. The criteria for invitation for an interview and for final selection into the program are similar to criteria for direct entrance into the Physiology PhD Program. These programs interview on two days separate from the Physiology interview day. Students matriculating into these interdisciplinary programs are not committed to a specific PhD granting department until the end of the first year in graduate school. Their selection of a program is based on rotations in laboratories in different departments and on the courses completed in the first year. These students may choose to matriculate into Physiology at the end of the first year of graduate studies. They will be required to take a different course load during year 2 than those students matriculating directly into Physiology. For more information on courses, click the blue “Curriculum” tab.

Students may also enter the Physiology PhD Program through the Medical Science Training Program (ӰԺ’s combined MD/PhD program), or MSTP. These students complete the first two years of medical school and then complete three to four years in graduate school before completing medical school. The MSTP is directed by Joseph Barbieri, PhD, who chairs a committee of other basic science and clinical faculty members. This committee is responsible for all aspects of the MSTP. During the first two years in medical school, MSTP students complete research rotations in various departments and based on these rotations, choose a laboratory (preceptor) for their PhD research.

Tuition and Fees

Tuition and Fees

Graduate School Tuition and Fees

If you have questions regarding tuition or your account, please contact the Office of Student Accounts, at (414) 955-8172 or mcwtuition@mcw.edu. Please refer to the All Student Handbook (PDF) for tuition payment policies and information.

PhD Students
All full-time PhD degree-seeking students in good academic and professional standing receive the following financial support package:

  • Full tuition coverage
  • Yearly stipend ($33,612 for the '23-'24 academic year)
  • Complimentary health insurance

There is no additional process to secure this package aside from accepting an offer of admission. Further, this package is guaranteed from the time of enrollment through completion of degree requirements.

Current ӰԺ Employees
Tuition Course Approval Form - Human Resources (PDF)

Late Fees
There is a $250 late payment fee for tuition not paid on time according to the Tuition Payments policy in the All Student Handbook (PDF).

Learn More
Faculty
Events

Events

Physiology News

Documents

Documents

Graduate School Forms

Please refer to the Graduate School webpage for more information
View Here

Contact Us

Graduate School
Suite H2200
8701 Watertown Plank Rd.
Milwaukee, WI 53226

 

(414) 955-8218
gradschool@mcw.edu


ӰԺ Graduate School Google map location